Inverse Spectral Problems in Riemannian Geometry
نویسنده
چکیده
Over twenty years ago, Marc Kac posed what is arguably one of the simplest inverse problems in pure mathematics: "Can one hear the shape of a drum?" [19]. Mathematically, the question is formulated as follows. Let /2 be a simply connected, plane domain (the drumhead) bounded by a smooth curve 7, and consider the wave equation on /2 with Dirichlet boundary condition on 7 (the drumhead is clamped at the boundary):
منابع مشابه
The inverse spectral problem
1 Introduction The inverse spectral problem on a Riemannian manifold (M, g), possibly with boundary, is to determine as much as possible of the geometry of (M, g) from the spectrum of its Laplacian ∆ g (with some given boundary conditions). The special inverse problem of Kac is to determine a Euclidean domain Ω ⊂ R n up to isometry from the spectrum Spec B (Ω) of its Laplacian ∆ B with Dirichle...
متن کاملNoncommutative Spectral Geometry of Riemannian Foliations: Some Results and Open Problems
We review some applications of noncommutative geometry to the study of transverse geometry of Riemannian foliations and discuss open problems.
متن کاملA Survey of Inverse Spectral Results
The existence of the Laplace-Beltrami operator has allowed mathematicians to carry out Fourier analysis on Riemannian manifolds [2]. We recall that the Laplace-Beltrami operator ∆ on a compact Riemannian manifold has a discrete set of eigenvalues {λj}j=1, which satisfies λj →∞ as j →∞. This is known as the spectrum of the Laplace-Beltrami operator. Inverse spectral geometry studies how much of ...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملA Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کامل